Population-Based Iterated Local Search: Restricting Neighborhood Search by Crossover
نویسنده
چکیده
Iterated local search (ILS) is a powerful meta-heuristic algorithm applied to a large variety of combinatorial optimization problems. Contrary to evolutionary algorithms (EAs) ILS focuses only on a single solution during its search. EAs have shown however that there can be a substantial gain in search quality when exploiting the information present in a population of solutions. In this paper we propose the use of a population for ILS. We define the general form of the resulting metaheuristic, called population-based iterated local search (PILS). PILS is a minimal extension of ILS that uses previously generated solutions in the neighborhood of the current solution to restrict the neighborhood search by ILS. This neighborhood restriction is analogous to the way crossover preserves common substructures between parents when generating offspring. To keep the discussion concrete, we discuss a specific instantiation of the PILS algorithm on a binary trap function.
منابع مشابه
Controller Placement in Software Defined Network using Iterated Local Search
Software defined network is a new computer network architecture who separates controller and data layer in network devices such as switches and routers. By the emerge of software defined networks, a class of location problems, called controller placement problem, has attracted much more research attention. The task in the problem is to simultaneously find optimal number and location of controll...
متن کاملIterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem
An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...
متن کاملLearning the Neighborhood with the Linkage Tree Genetic Algorithm
We discuss the use of online learning of the local search neighborhood. Specifically, we consider the Linkage Tree Genetic Algorithm (LTGA), a population-based, stochastic local search algorithm that learns the neighborhood by identifying the problem variables that have a high mutual information in a population of good solutions. The LTGA builds each generation a linkage tree using a hierarchic...
متن کاملQuery-driven iterated neighborhood graph search for scalable visual indexing
In this paper, we address the approximate nearest neighbor (ANN) search problem over large scale visual descriptors. We investigate a simple but very effective approach, neighborhood graph (NG) search, which conducts the local search by expanding neighborhoods with a best-first manner. Expanding neighborhood makes it efficient to locate the descriptors with high probability being true NNs. Howe...
متن کاملIterated local search for the multiple depot vehicle scheduling problem
The multiple depot vehicle scheduling problem (MDVSP) is a well-known and important problem arising in public transport. Although many solution approaches have been published in the literature, algorithms using metaheuristics appeared only very recently (Large Neighborhood Search and Tabu Search). In this paper, we introduce an Iterated Local Search algorithm for the MDVSP, incorporating a neig...
متن کامل